Spatial Accessibility helps to quantify the disparities in access to critical goods and services across space. In the context of healthcare, those inequities have real-word consequences for the health and lives of people.
A screenshot of the WhereCOVID-19 Dashboard's Accessibility Explorer
Associated Publications
Journal Articles
2023
Daily Changes in Spatial Accessibility to ICU Beds and Their Relationship with the Case-Fatality Ratio of COVID-19 in the State of Texas, USA
Applied Geography,
2023
During the COVID-19 pandemic, many patients could not receive timely healthcare services due to limited availability and access to healthcare resources and services. Previous studies found that access to intensive care unit (ICU) beds saves lives, but they overlooked the temporal dynamics in the availability of healthcare resources and COVID-19 cases. To fill this gap, our study investigated daily changes in ICU bed accessibility with an enhanced two-step floating catchment area (E2SFCA) method in the state of Texas. Along with the increased temporal granularity of measurements, we uncovered two phenomena: 1) aggravated spatial inequality of access during the pandemic, and 2) the retrospective relationship between insufficient ICU bed accessibility and the high case-fatality ratio of COVID-19 in rural areas. Our findings suggest that those locations should be supplemented with additional healthcare resources to save lives in future pandemic scenarios.
2022
Spatial Accessibility to HIV Testing, Treatment, and Prevention Services in Illinois and Chicago, USA
Kang, Jeon-Young,
Fayaz-Farkhad, Bita,
Chan, Man-pui Sally,
Michels, Alexander,
Albarracin, Dolores,
and
Wang, Shaowen
PLOS ONE,
2022
Accomplishing the goals outlined in “Ending the HIV (Human Immunodeficiency Virus) Epidemic: A Plan for America Initiative” will require properly estimating and increasing access to HIV testing, treatment, and prevention services. In this research, a computational spatial method for estimating access was applied to measure distance to services from all points of a city or state while considering the size of the population in need for services as well as both driving and public transportation. Specifically, this study employed the enhanced two-step floating catchment area (E2SFCA) method to measure spatial accessibility to HIV testing, treatment (i.e., Ryan White HIV/AIDS program), and prevention (i.e., Pre-Exposure Prophylaxis [PrEP]) services. The method considered the spatial location of MSM (Men Who have Sex with Men), PLWH (People Living with HIV), and the general adult population 15–64 depending on what HIV services the U.S. Centers for Disease Control (CDC) recommends for each group. The study delineated service- and population-specific accessibility maps, demonstrating the method’s utility by analyzing data corresponding to the city of Chicago and the state of Illinois. Findings indicated health disparities in the south and the northwest of Chicago and particular areas in Illinois, as well as unique health disparities for public transportation compared to driving. The methodology details and computer code are shared for use in research and public policy.
2020
Rapidly Measuring Spatial Accessibility of COVID-19 Healthcare Resources: A Case Study of Illinois, USA
Kang, Jeon-Young,
Michels, Alexander C,
Lyu, Fangzheng,
Wang, Shaohua,
Agbodo, Nelson,
Freeman, Vincent L,
and
Wang, Shaowen
International Journal of Health Geographics,
2020
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19) pandemic, has infected millions of people and caused hundreds of thousands of deaths. While COVID-19 has overwhelmed healthcare resources (e.g., healthcare personnel, testing resources, hospital beds, and ventilators) in a number of countries, limited research has been conducted to understand spatial accessibility of such resources. This study fills this gap by rapidly measuring the spatial accessibility of COVID-19 healthcare resources with a particular focus on Illinois, USA. Specifically, the rapid measurement is achieved by resolving computational intensity of an enhanced two-step floating catchment area (E2SFCA) method through a parallel computing strategy based on cyberGIS (cyber geographic information science and systems). The study compared the spatial accessibility measures for COVID-19 patients to those of general population, identifying which geographic areas need additional healthcare resources to improve access. The results also help delineate the areas that may face a COVID-19-induced shortage of healthcare resources caused by COVID-19. The Chicagoland, particularly the southern Chicago, shows an additional need for resources. Our findings are relevant for policymakers and public health practitioners to allocate existing healthcare resources or distribute new resources for maximum access to health services.